STU5N65M6

N-channel 650 V, 1.15 Ω typ., 4 A MDmesh™ M6 Power MOSFET in an IPAK package

Datasheet - production data

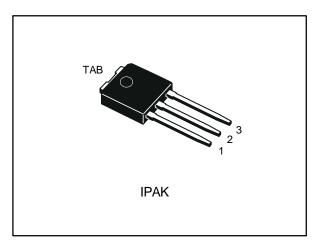
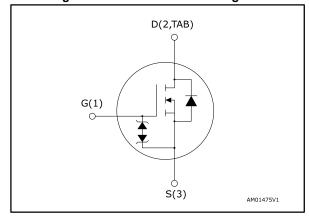



Figure 1: Internal schematic diagram

Features

Order code	V _{DS}	R _{DS(on)} max.	ΙD
STU5N65M6	650 V	1.3 Ω	4 A

- Reduced switching losses
- Lower R_{DS(on)} x area vs previous generation
- Low gate input resistance
- 100% avalanche tested
- Zener-protected

Applications

• Switching applications

Description

Table 1: Device summary

Order code	Marking	Package	Packing
STU5N65M6	5N65M6	IPAK	Tube

Contents STU5N65M6

Contents

1	Electrical ratings3				
2	Electric	cal characteristics	4		
	2.1	Electrical characteristics (curves)	6		
3	Test cir	rcuits	8		
4	Packag	e information	9		
	4.1	IPAK package information	9		
5	Revisio	on history	11		

STU5N65M6 Electrical ratings

1 Electrical ratings

Table 2: Absolute maximum ratings

Symbol	Parameter	Value	Unit
V _G s	Gate-source voltage	± 25	V
I _D	Drain current (continuous) at T _C = 25 °C	4	Α
I _D	Drain current (continuous) at T _C = 100 °C	2.5	Α
I _{DM} ⁽¹⁾	Drain current (pulsed)	16	Α
P _{TOT}	Total dissipation at T _C = 25 °C	45	W
dv/dt ⁽²⁾	Peak diode recovery voltage slope 5		V/ns
dv/dt ⁽³⁾	MOSFET dv/dt ruggedness 50		V/IIS
TJ	Operating junction temperature range		°C
T _{stg}	Storage temperature range	-55 to 150	

Notes:

Table 3: Thermal data

Symbol	Parameter	Value	Unit
R _{thj-case}	Thermal resistance junction-case	2.78	900
R _{thj-amb}	Thermal resistance junction-ambient	100	°C/W

Table 4: Avalanche characteristics

Symbol	Parameter	Value	Unit
I _{AR}	Avalanche current, repetitive or not repetitive (pulse width limited by $T_{j\text{max}})$	1	Α
Eas	Single pulse avalanche energy (starting T_j =25°C, I_D = I_{AR} , V_{DD} =50 V)	90	mJ

⁽¹⁾Pulse width limited by safe operating area

 $^{^{(2)}}I_{SD} \leq 4$ A, di/dt = 400 A/ μ s; V_{DS peak} < V_{(BR)DSS}, V_{DD} = 400 V

 $^{^{(3)}}V_{DS} \le 520 \ V$

Electrical characteristics STU5N65M6

2 Electrical characteristics

T_C = 25 °C unless otherwise specified

Table 5: On/off-state

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _{(BR)DSS}	Drain-source breakdown voltage	$V_{GS}=0$, $I_D=1$ mA	650			V
		V _{GS} = 0 V, V _{DS} = 650 V			1	μΑ
I _{DSS}	Zero gate voltage drain current	$V_{GS} = 0 \text{ V}, V_{DS} = 650 \text{ V};$ $T_{C} = 125 \text{ °C}^{(1)}$			100	μΑ
Igss	Gate body leakage current	$V_{DS} = 0 \text{ V}, V_{GS} = \pm 25 \text{ V}$			±5	μΑ
V _{GS(th)}	Gate threshold voltage	$V_{DS} = V_{GS}$, $I_D = 250 \mu A$	2.25	3	3.75	V
R _{DS(on)}	Static drain-source on-resistance	$V_{GS} = 10 \text{ V}, I_D = 2 \text{ A}$		1.15	1.3	Ω

Notes:

Table 6: Dynamic

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
Ciss	Input capacitance		-	170	ı	pF
Coss	Output capacitance	V _{DS} = 100 V, f = 1 MHz, V _{GS} = 0 V	-	20	1	pF
C _{rss}	Reverse transfer capacitance	755 - 766 V, 7 - 7 Minz, V66 - 6 V	-	1	ı	pF
Coss	Equivalent output capacitance	V _{DS} = 0 to 520 V, V _{GS} = 0 V	-	35	-	pF
R _G	Intrinsic gate resistance	f = 1 MHz, I _D =0 A	-	5	-	Ω
Qg	Total gate charge	V _{DD} = 350 V, I _D = 1 A, V _{GS} = 10 V,	-	5.1	ı	nC
Qgs	Gate-source charge	(see Figure 15: "Test circuit for	-	8.0	1	nC
Q_{gd}	Gate-drain charge	gate charge behavior")	-	2	-	nC

Notes:

Table 7: Switching times

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
t _{d(on)}	Turn-on delay time	V_{DD} = 325 V, I_D = 2 A, R_G = 4.7 Ω ,	ı	6.5	-	ns
t _r	Rise time	V _{GS} = 10 V (see <i>Figure 14: "Test</i>		5.9	-	ns
t _{d(off)}	Turn-off delay time	circuit for resistive load switching times" and Figure 19: "Switching	-	17.4	-	ns
t _f	Fall time	time waveform")	-	15.2	-	ns

 $^{^{(1)}}$ Defined by design, not subject to production test.

 $^{^{(1)}}C_{oss\ eq.}$ is defined as a constant equivalent capacitance giving the same charging time as C_{oss} when V_{DS} increases from 0 to 80% V_{DSS}

Table 8: Source-drain diode

Symbol	Parameter	Parameter Test conditions		Тур.	Max.	Unit
Isp	Source-drain current		-		4	Α
I _{SDM} ⁽¹⁾	Source-drain current (pulsed)		-		16	Α
V _{SD} ⁽²⁾	Forward on voltage	I _{SD} = 4 A, V _{GS} = 0 V	ı		1.6	V
t _{rr}	Reverse recovery time	I _{SD} = 4 A, di/dt = 100 A/μs,	ı	222		ns
Qrr	Reverse recovery charge	$V_{DD} = 60 \text{ V}$, (see <i>Figure 19:</i>	-	1.24		μC
I _{RRM}	Reverse recovery current	"Switching time waveform")	ı	11.2		Α
t _{rr}	Reverse recovery time	$I_{SD} = 4 \text{ A}, \text{ di/dt} = 100 \text{ A/}\mu\text{s},$	-	264		ns
Qrr	Reverse recovery charge	$V_{DD} = 60 \text{ V}, T_j = 150 \text{ °C}$ (see Figure 19: "Switching"	-	1.39		μC
I _{RRM}	Reverse recovery current	time waveform")	-	10.5		Α

Notes:

⁽¹⁾Pulse width limited by safe operating area

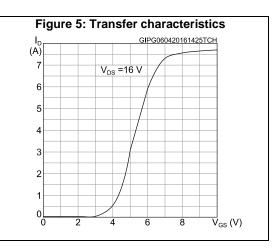
 $^{^{(2)}\}text{Pulsed:}$ pulse duration = 300 $\mu\text{s,}$ duty cycle 1.5%

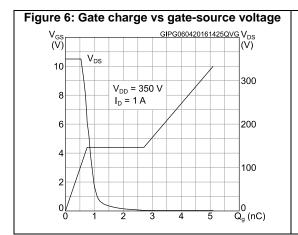
 $\bar{V}_{DS}\left(V\right)$

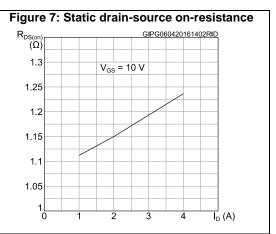
2.1 Electrical characteristics (curves)

Figure 2: Safe operating area

GIPG060420161432SOA


(A) Operation in this area is limited by $R_{DS(m)}$ 101 $t_p=10 \ \mu s$ $t_p=100 \ \mu s$ $t_p=10 \ m s$


10¹


10

10²

Figure 3: Thermal impedance $\begin{matrix} \mathsf{K} & & & \mathsf{CG34360} \\ \mathsf{K} & & & \mathsf{CG34360} \\ \mathsf{10}^0 & \delta = 0.5 & & & \\ \delta = 0.2 & & & \mathsf{Z}_{th} = \mathsf{K}^* \mathsf{R}_{thj_{\mathbf{C}}} \\ \delta = 0.01 & & & \mathsf{Single pulse} \\ \mathsf{10}^2 & & \mathsf{10}^4 & \mathsf{10}^3 & \mathsf{10}^2 & \mathsf{10}^{-1} & \mathsf{t_p} \ (\mathsf{s}) \end{matrix}$

STU5N65M6 Electrical characteristics

Figure 8: Capacitance variations

C
(pF)

103

102

101

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

1001

100

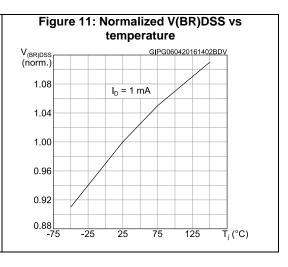
Figure 10: Normalized on-resistance vs temperature

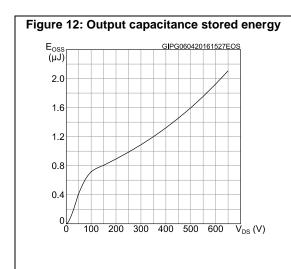
R_{DS(on)} GIPG060420161401RON
(norm.)

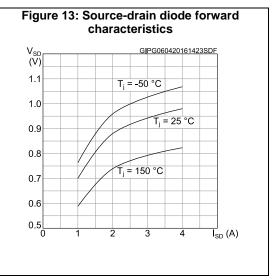
2.2

V_{GS} = 10 V

1.8


1.4


1.0


0.6

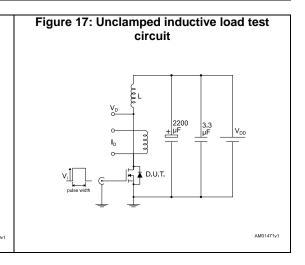
0.2

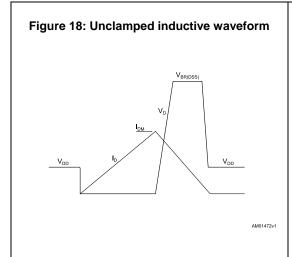
-75 -25 25 75 125 T_j (°C)

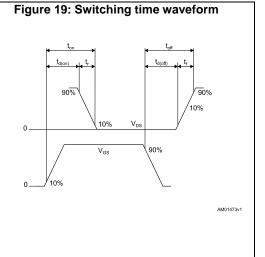
Test circuits STU5N65M6

3 Test circuits

Figure 14: Test circuit for resistive load switching times


Figure 15: Test circuit for gate charge behavior


12 V 100 η F 1 KΩ


Vos 1 1 KΩ

AM01468v1

Figure 16: Test circuit for inductive load switching and diode recovery times

STU5N65M6 Package information

4 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: **www.st.com**. ECOPACK® is an ST trademark.

4.1 IPAK package information

L2 D b2 (3x) Н **b** (3x) A 1 *B5* 0068771_IK_typeA_rev14 e 1-

Figure 20: IPAK (TO-251) type A package outline

Table 9: IPAK (TO-251) type A package mechanical data

		mm	
Dim.	Min.	Тур.	Max.
A	2.20		2.40
A1	0.90		1.10
b	0.64		0.90
b2			0.95
b4	5.20		5.40
B5		0.30	
С	0.45		0.60
c2	0.48		0.60
D	6.00		6.20
E	6.40		6.60
е		2.28	
e1	4.40		4.60
Н		16.10	
L	9.00		9.40
L1	0.80		1.20
L2		0.80	1.00
V1		10°	

STU5N65M6 Revision history

5 Revision history

Table 10: Document revision history

Date	Revision	Changes
07-Apr-2016	1	Initial release.
05-May-2016	2	Modified: Figure 8: "Capacitance variations" and Figure 12: "Output capacitance stored energy" Minor text changes

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2016 STMicroelectronics - All rights reserved